3.3.55 \(\int \frac {(b x+c x^2)^3}{(d+e x)^7} \, dx\) [255]

Optimal. Leaf size=228 \[ -\frac {d^3 (c d-b e)^3}{6 e^7 (d+e x)^6}+\frac {3 d^2 (c d-b e)^2 (2 c d-b e)}{5 e^7 (d+e x)^5}-\frac {3 d (c d-b e) \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{4 e^7 (d+e x)^4}+\frac {(2 c d-b e) \left (10 c^2 d^2-10 b c d e+b^2 e^2\right )}{3 e^7 (d+e x)^3}-\frac {3 c \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{2 e^7 (d+e x)^2}+\frac {3 c^2 (2 c d-b e)}{e^7 (d+e x)}+\frac {c^3 \log (d+e x)}{e^7} \]

[Out]

-1/6*d^3*(-b*e+c*d)^3/e^7/(e*x+d)^6+3/5*d^2*(-b*e+c*d)^2*(-b*e+2*c*d)/e^7/(e*x+d)^5-3/4*d*(-b*e+c*d)*(b^2*e^2-
5*b*c*d*e+5*c^2*d^2)/e^7/(e*x+d)^4+1/3*(-b*e+2*c*d)*(b^2*e^2-10*b*c*d*e+10*c^2*d^2)/e^7/(e*x+d)^3-3/2*c*(b^2*e
^2-5*b*c*d*e+5*c^2*d^2)/e^7/(e*x+d)^2+3*c^2*(-b*e+2*c*d)/e^7/(e*x+d)+c^3*ln(e*x+d)/e^7

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 228, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {712} \begin {gather*} -\frac {3 c \left (b^2 e^2-5 b c d e+5 c^2 d^2\right )}{2 e^7 (d+e x)^2}+\frac {(2 c d-b e) \left (b^2 e^2-10 b c d e+10 c^2 d^2\right )}{3 e^7 (d+e x)^3}-\frac {3 d (c d-b e) \left (b^2 e^2-5 b c d e+5 c^2 d^2\right )}{4 e^7 (d+e x)^4}+\frac {3 c^2 (2 c d-b e)}{e^7 (d+e x)}-\frac {d^3 (c d-b e)^3}{6 e^7 (d+e x)^6}+\frac {3 d^2 (c d-b e)^2 (2 c d-b e)}{5 e^7 (d+e x)^5}+\frac {c^3 \log (d+e x)}{e^7} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*x + c*x^2)^3/(d + e*x)^7,x]

[Out]

-1/6*(d^3*(c*d - b*e)^3)/(e^7*(d + e*x)^6) + (3*d^2*(c*d - b*e)^2*(2*c*d - b*e))/(5*e^7*(d + e*x)^5) - (3*d*(c
*d - b*e)*(5*c^2*d^2 - 5*b*c*d*e + b^2*e^2))/(4*e^7*(d + e*x)^4) + ((2*c*d - b*e)*(10*c^2*d^2 - 10*b*c*d*e + b
^2*e^2))/(3*e^7*(d + e*x)^3) - (3*c*(5*c^2*d^2 - 5*b*c*d*e + b^2*e^2))/(2*e^7*(d + e*x)^2) + (3*c^2*(2*c*d - b
*e))/(e^7*(d + e*x)) + (c^3*Log[d + e*x])/e^7

Rule 712

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
 e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*
e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && IntegerQ[p] && (GtQ[p, 0] || (EqQ[a, 0] && IntegerQ[m]))

Rubi steps

\begin {align*} \int \frac {\left (b x+c x^2\right )^3}{(d+e x)^7} \, dx &=\int \left (\frac {d^3 (c d-b e)^3}{e^6 (d+e x)^7}-\frac {3 d^2 (c d-b e)^2 (2 c d-b e)}{e^6 (d+e x)^6}+\frac {3 d (c d-b e) \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{e^6 (d+e x)^5}+\frac {(2 c d-b e) \left (-10 c^2 d^2+10 b c d e-b^2 e^2\right )}{e^6 (d+e x)^4}+\frac {3 c \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{e^6 (d+e x)^3}-\frac {3 c^2 (2 c d-b e)}{e^6 (d+e x)^2}+\frac {c^3}{e^6 (d+e x)}\right ) \, dx\\ &=-\frac {d^3 (c d-b e)^3}{6 e^7 (d+e x)^6}+\frac {3 d^2 (c d-b e)^2 (2 c d-b e)}{5 e^7 (d+e x)^5}-\frac {3 d (c d-b e) \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{4 e^7 (d+e x)^4}+\frac {(2 c d-b e) \left (10 c^2 d^2-10 b c d e+b^2 e^2\right )}{3 e^7 (d+e x)^3}-\frac {3 c \left (5 c^2 d^2-5 b c d e+b^2 e^2\right )}{2 e^7 (d+e x)^2}+\frac {3 c^2 (2 c d-b e)}{e^7 (d+e x)}+\frac {c^3 \log (d+e x)}{e^7}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 231, normalized size = 1.01 \begin {gather*} \frac {-b^3 e^3 \left (d^3+6 d^2 e x+15 d e^2 x^2+20 e^3 x^3\right )-6 b^2 c e^2 \left (d^4+6 d^3 e x+15 d^2 e^2 x^2+20 d e^3 x^3+15 e^4 x^4\right )-30 b c^2 e \left (d^5+6 d^4 e x+15 d^3 e^2 x^2+20 d^2 e^3 x^3+15 d e^4 x^4+6 e^5 x^5\right )+c^3 d \left (147 d^5+822 d^4 e x+1875 d^3 e^2 x^2+2200 d^2 e^3 x^3+1350 d e^4 x^4+360 e^5 x^5\right )+60 c^3 (d+e x)^6 \log (d+e x)}{60 e^7 (d+e x)^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*x + c*x^2)^3/(d + e*x)^7,x]

[Out]

(-(b^3*e^3*(d^3 + 6*d^2*e*x + 15*d*e^2*x^2 + 20*e^3*x^3)) - 6*b^2*c*e^2*(d^4 + 6*d^3*e*x + 15*d^2*e^2*x^2 + 20
*d*e^3*x^3 + 15*e^4*x^4) - 30*b*c^2*e*(d^5 + 6*d^4*e*x + 15*d^3*e^2*x^2 + 20*d^2*e^3*x^3 + 15*d*e^4*x^4 + 6*e^
5*x^5) + c^3*d*(147*d^5 + 822*d^4*e*x + 1875*d^3*e^2*x^2 + 2200*d^2*e^3*x^3 + 1350*d*e^4*x^4 + 360*e^5*x^5) +
60*c^3*(d + e*x)^6*Log[d + e*x])/(60*e^7*(d + e*x)^6)

________________________________________________________________________________________

Maple [A]
time = 0.43, size = 272, normalized size = 1.19

method result size
risch \(\frac {-\frac {3 c^{2} \left (b e -2 c d \right ) x^{5}}{e^{2}}-\frac {3 c \left (b^{2} e^{2}+5 b c d e -15 d^{2} c^{2}\right ) x^{4}}{2 e^{3}}-\frac {\left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -110 c^{3} d^{3}\right ) x^{3}}{3 e^{4}}-\frac {d \left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -125 c^{3} d^{3}\right ) x^{2}}{4 e^{5}}-\frac {d^{2} \left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -137 c^{3} d^{3}\right ) x}{10 e^{6}}-\frac {d^{3} \left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -147 c^{3} d^{3}\right )}{60 e^{7}}}{\left (e x +d \right )^{6}}+\frac {c^{3} \ln \left (e x +d \right )}{e^{7}}\) \(252\)
norman \(\frac {-\frac {d^{3} \left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -147 c^{3} d^{3}\right )}{60 e^{7}}-\frac {3 \left (b \,c^{2} e -2 c^{3} d \right ) x^{5}}{e^{2}}-\frac {3 \left (b^{2} e^{2} c +5 d e b \,c^{2}-15 c^{3} d^{2}\right ) x^{4}}{2 e^{3}}-\frac {\left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -110 c^{3} d^{3}\right ) x^{3}}{3 e^{4}}-\frac {d \left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -125 c^{3} d^{3}\right ) x^{2}}{4 e^{5}}-\frac {d^{2} \left (b^{3} e^{3}+6 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -137 c^{3} d^{3}\right ) x}{10 e^{6}}}{\left (e x +d \right )^{6}}+\frac {c^{3} \ln \left (e x +d \right )}{e^{7}}\) \(256\)
default \(-\frac {3 c \left (b^{2} e^{2}-5 b c d e +5 d^{2} c^{2}\right )}{2 e^{7} \left (e x +d \right )^{2}}+\frac {3 d \left (b^{3} e^{3}-6 b^{2} d \,e^{2} c +10 b \,c^{2} d^{2} e -5 c^{3} d^{3}\right )}{4 e^{7} \left (e x +d \right )^{4}}+\frac {d^{3} \left (b^{3} e^{3}-3 b^{2} d \,e^{2} c +3 b \,c^{2} d^{2} e -c^{3} d^{3}\right )}{6 e^{7} \left (e x +d \right )^{6}}-\frac {3 c^{2} \left (b e -2 c d \right )}{e^{7} \left (e x +d \right )}-\frac {b^{3} e^{3}-12 b^{2} d \,e^{2} c +30 b \,c^{2} d^{2} e -20 c^{3} d^{3}}{3 e^{7} \left (e x +d \right )^{3}}+\frac {c^{3} \ln \left (e x +d \right )}{e^{7}}-\frac {3 d^{2} \left (b^{3} e^{3}-4 b^{2} d \,e^{2} c +5 b \,c^{2} d^{2} e -2 c^{3} d^{3}\right )}{5 e^{7} \left (e x +d \right )^{5}}\) \(272\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^3/(e*x+d)^7,x,method=_RETURNVERBOSE)

[Out]

-3/2*c*(b^2*e^2-5*b*c*d*e+5*c^2*d^2)/e^7/(e*x+d)^2+3/4*d/e^7*(b^3*e^3-6*b^2*c*d*e^2+10*b*c^2*d^2*e-5*c^3*d^3)/
(e*x+d)^4+1/6*d^3*(b^3*e^3-3*b^2*c*d*e^2+3*b*c^2*d^2*e-c^3*d^3)/e^7/(e*x+d)^6-3*c^2/e^7*(b*e-2*c*d)/(e*x+d)-1/
3/e^7*(b^3*e^3-12*b^2*c*d*e^2+30*b*c^2*d^2*e-20*c^3*d^3)/(e*x+d)^3+c^3*ln(e*x+d)/e^7-3/5*d^2/e^7*(b^3*e^3-4*b^
2*c*d*e^2+5*b*c^2*d^2*e-2*c^3*d^3)/(e*x+d)^5

________________________________________________________________________________________

Maxima [A]
time = 0.31, size = 308, normalized size = 1.35 \begin {gather*} c^{3} e^{\left (-7\right )} \log \left (x e + d\right ) + \frac {147 \, c^{3} d^{6} - 30 \, b c^{2} d^{5} e - 6 \, b^{2} c d^{4} e^{2} - b^{3} d^{3} e^{3} + 180 \, {\left (2 \, c^{3} d e^{5} - b c^{2} e^{6}\right )} x^{5} + 90 \, {\left (15 \, c^{3} d^{2} e^{4} - 5 \, b c^{2} d e^{5} - b^{2} c e^{6}\right )} x^{4} + 20 \, {\left (110 \, c^{3} d^{3} e^{3} - 30 \, b c^{2} d^{2} e^{4} - 6 \, b^{2} c d e^{5} - b^{3} e^{6}\right )} x^{3} + 15 \, {\left (125 \, c^{3} d^{4} e^{2} - 30 \, b c^{2} d^{3} e^{3} - 6 \, b^{2} c d^{2} e^{4} - b^{3} d e^{5}\right )} x^{2} + 6 \, {\left (137 \, c^{3} d^{5} e - 30 \, b c^{2} d^{4} e^{2} - 6 \, b^{2} c d^{3} e^{3} - b^{3} d^{2} e^{4}\right )} x}{60 \, {\left (x^{6} e^{13} + 6 \, d x^{5} e^{12} + 15 \, d^{2} x^{4} e^{11} + 20 \, d^{3} x^{3} e^{10} + 15 \, d^{4} x^{2} e^{9} + 6 \, d^{5} x e^{8} + d^{6} e^{7}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^3/(e*x+d)^7,x, algorithm="maxima")

[Out]

c^3*e^(-7)*log(x*e + d) + 1/60*(147*c^3*d^6 - 30*b*c^2*d^5*e - 6*b^2*c*d^4*e^2 - b^3*d^3*e^3 + 180*(2*c^3*d*e^
5 - b*c^2*e^6)*x^5 + 90*(15*c^3*d^2*e^4 - 5*b*c^2*d*e^5 - b^2*c*e^6)*x^4 + 20*(110*c^3*d^3*e^3 - 30*b*c^2*d^2*
e^4 - 6*b^2*c*d*e^5 - b^3*e^6)*x^3 + 15*(125*c^3*d^4*e^2 - 30*b*c^2*d^3*e^3 - 6*b^2*c*d^2*e^4 - b^3*d*e^5)*x^2
 + 6*(137*c^3*d^5*e - 30*b*c^2*d^4*e^2 - 6*b^2*c*d^3*e^3 - b^3*d^2*e^4)*x)/(x^6*e^13 + 6*d*x^5*e^12 + 15*d^2*x
^4*e^11 + 20*d^3*x^3*e^10 + 15*d^4*x^2*e^9 + 6*d^5*x*e^8 + d^6*e^7)

________________________________________________________________________________________

Fricas [A]
time = 3.13, size = 385, normalized size = 1.69 \begin {gather*} \frac {147 \, c^{3} d^{6} - 10 \, {\left (18 \, b c^{2} x^{5} + 9 \, b^{2} c x^{4} + 2 \, b^{3} x^{3}\right )} e^{6} + 15 \, {\left (24 \, c^{3} d x^{5} - 30 \, b c^{2} d x^{4} - 8 \, b^{2} c d x^{3} - b^{3} d x^{2}\right )} e^{5} + 6 \, {\left (225 \, c^{3} d^{2} x^{4} - 100 \, b c^{2} d^{2} x^{3} - 15 \, b^{2} c d^{2} x^{2} - b^{3} d^{2} x\right )} e^{4} + {\left (2200 \, c^{3} d^{3} x^{3} - 450 \, b c^{2} d^{3} x^{2} - 36 \, b^{2} c d^{3} x - b^{3} d^{3}\right )} e^{3} + 3 \, {\left (625 \, c^{3} d^{4} x^{2} - 60 \, b c^{2} d^{4} x - 2 \, b^{2} c d^{4}\right )} e^{2} + 6 \, {\left (137 \, c^{3} d^{5} x - 5 \, b c^{2} d^{5}\right )} e + 60 \, {\left (c^{3} x^{6} e^{6} + 6 \, c^{3} d x^{5} e^{5} + 15 \, c^{3} d^{2} x^{4} e^{4} + 20 \, c^{3} d^{3} x^{3} e^{3} + 15 \, c^{3} d^{4} x^{2} e^{2} + 6 \, c^{3} d^{5} x e + c^{3} d^{6}\right )} \log \left (x e + d\right )}{60 \, {\left (x^{6} e^{13} + 6 \, d x^{5} e^{12} + 15 \, d^{2} x^{4} e^{11} + 20 \, d^{3} x^{3} e^{10} + 15 \, d^{4} x^{2} e^{9} + 6 \, d^{5} x e^{8} + d^{6} e^{7}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^3/(e*x+d)^7,x, algorithm="fricas")

[Out]

1/60*(147*c^3*d^6 - 10*(18*b*c^2*x^5 + 9*b^2*c*x^4 + 2*b^3*x^3)*e^6 + 15*(24*c^3*d*x^5 - 30*b*c^2*d*x^4 - 8*b^
2*c*d*x^3 - b^3*d*x^2)*e^5 + 6*(225*c^3*d^2*x^4 - 100*b*c^2*d^2*x^3 - 15*b^2*c*d^2*x^2 - b^3*d^2*x)*e^4 + (220
0*c^3*d^3*x^3 - 450*b*c^2*d^3*x^2 - 36*b^2*c*d^3*x - b^3*d^3)*e^3 + 3*(625*c^3*d^4*x^2 - 60*b*c^2*d^4*x - 2*b^
2*c*d^4)*e^2 + 6*(137*c^3*d^5*x - 5*b*c^2*d^5)*e + 60*(c^3*x^6*e^6 + 6*c^3*d*x^5*e^5 + 15*c^3*d^2*x^4*e^4 + 20
*c^3*d^3*x^3*e^3 + 15*c^3*d^4*x^2*e^2 + 6*c^3*d^5*x*e + c^3*d^6)*log(x*e + d))/(x^6*e^13 + 6*d*x^5*e^12 + 15*d
^2*x^4*e^11 + 20*d^3*x^3*e^10 + 15*d^4*x^2*e^9 + 6*d^5*x*e^8 + d^6*e^7)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**3/(e*x+d)**7,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]
time = 0.76, size = 260, normalized size = 1.14 \begin {gather*} c^{3} e^{\left (-7\right )} \log \left ({\left | x e + d \right |}\right ) + \frac {{\left (180 \, {\left (2 \, c^{3} d e^{4} - b c^{2} e^{5}\right )} x^{5} + 90 \, {\left (15 \, c^{3} d^{2} e^{3} - 5 \, b c^{2} d e^{4} - b^{2} c e^{5}\right )} x^{4} + 20 \, {\left (110 \, c^{3} d^{3} e^{2} - 30 \, b c^{2} d^{2} e^{3} - 6 \, b^{2} c d e^{4} - b^{3} e^{5}\right )} x^{3} + 15 \, {\left (125 \, c^{3} d^{4} e - 30 \, b c^{2} d^{3} e^{2} - 6 \, b^{2} c d^{2} e^{3} - b^{3} d e^{4}\right )} x^{2} + 6 \, {\left (137 \, c^{3} d^{5} - 30 \, b c^{2} d^{4} e - 6 \, b^{2} c d^{3} e^{2} - b^{3} d^{2} e^{3}\right )} x + {\left (147 \, c^{3} d^{6} - 30 \, b c^{2} d^{5} e - 6 \, b^{2} c d^{4} e^{2} - b^{3} d^{3} e^{3}\right )} e^{\left (-1\right )}\right )} e^{\left (-6\right )}}{60 \, {\left (x e + d\right )}^{6}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^3/(e*x+d)^7,x, algorithm="giac")

[Out]

c^3*e^(-7)*log(abs(x*e + d)) + 1/60*(180*(2*c^3*d*e^4 - b*c^2*e^5)*x^5 + 90*(15*c^3*d^2*e^3 - 5*b*c^2*d*e^4 -
b^2*c*e^5)*x^4 + 20*(110*c^3*d^3*e^2 - 30*b*c^2*d^2*e^3 - 6*b^2*c*d*e^4 - b^3*e^5)*x^3 + 15*(125*c^3*d^4*e - 3
0*b*c^2*d^3*e^2 - 6*b^2*c*d^2*e^3 - b^3*d*e^4)*x^2 + 6*(137*c^3*d^5 - 30*b*c^2*d^4*e - 6*b^2*c*d^3*e^2 - b^3*d
^2*e^3)*x + (147*c^3*d^6 - 30*b*c^2*d^5*e - 6*b^2*c*d^4*e^2 - b^3*d^3*e^3)*e^(-1))*e^(-6)/(x*e + d)^6

________________________________________________________________________________________

Mupad [B]
time = 0.16, size = 268, normalized size = 1.18 \begin {gather*} \frac {c^3\,\ln \left (d+e\,x\right )}{e^7}-\frac {x^5\,\left (3\,b\,c^2\,e^6-6\,c^3\,d\,e^5\right )+x^4\,\left (\frac {3\,b^2\,c\,e^6}{2}+\frac {15\,b\,c^2\,d\,e^5}{2}-\frac {45\,c^3\,d^2\,e^4}{2}\right )+x\,\left (\frac {b^3\,d^2\,e^4}{10}+\frac {3\,b^2\,c\,d^3\,e^3}{5}+3\,b\,c^2\,d^4\,e^2-\frac {137\,c^3\,d^5\,e}{10}\right )+x^2\,\left (\frac {b^3\,d\,e^5}{4}+\frac {3\,b^2\,c\,d^2\,e^4}{2}+\frac {15\,b\,c^2\,d^3\,e^3}{2}-\frac {125\,c^3\,d^4\,e^2}{4}\right )+x^3\,\left (\frac {b^3\,e^6}{3}+2\,b^2\,c\,d\,e^5+10\,b\,c^2\,d^2\,e^4-\frac {110\,c^3\,d^3\,e^3}{3}\right )-\frac {49\,c^3\,d^6}{20}+\frac {b^3\,d^3\,e^3}{60}+\frac {b^2\,c\,d^4\,e^2}{10}+\frac {b\,c^2\,d^5\,e}{2}}{e^7\,{\left (d+e\,x\right )}^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x + c*x^2)^3/(d + e*x)^7,x)

[Out]

(c^3*log(d + e*x))/e^7 - (x^5*(3*b*c^2*e^6 - 6*c^3*d*e^5) + x^4*((3*b^2*c*e^6)/2 - (45*c^3*d^2*e^4)/2 + (15*b*
c^2*d*e^5)/2) + x*((b^3*d^2*e^4)/10 - (137*c^3*d^5*e)/10 + 3*b*c^2*d^4*e^2 + (3*b^2*c*d^3*e^3)/5) + x^2*((b^3*
d*e^5)/4 - (125*c^3*d^4*e^2)/4 + (15*b*c^2*d^3*e^3)/2 + (3*b^2*c*d^2*e^4)/2) + x^3*((b^3*e^6)/3 - (110*c^3*d^3
*e^3)/3 + 10*b*c^2*d^2*e^4 + 2*b^2*c*d*e^5) - (49*c^3*d^6)/20 + (b^3*d^3*e^3)/60 + (b^2*c*d^4*e^2)/10 + (b*c^2
*d^5*e)/2)/(e^7*(d + e*x)^6)

________________________________________________________________________________________